Coordinated regulation of heterochromatic genes in Drosophila melanogaster males.

نویسندگان

  • Xinxian Deng
  • S Kiran Koya
  • Ying Kong
  • Victoria H Meller
چکیده

Dosage compensation modifies the chromatin of X-linked genes to assure equivalent expression in sexes with unequal X chromosome dosage. In Drosophila dosage compensation is achieved by increasing expression from the male X chromosome. The ribonucleoprotein dosage compensation complex (DCC) binds hundreds of sites along the X chromosome and modifies chromatin to facilitate transcription. Loss of roX RNA, an essential component of the DCC, reduces expression from X-linked genes. Surprisingly, loss of roX RNA also reduces expression from genes situated in proximal heterochromatin and on the small, heterochromatic fourth chromosome. Mutation of some, but not all, of the genes encoding DCC proteins produces a similar effect. Reduction of roX function suppresses position effect variegation (PEV), revealing functional alteration in heterochromatin. The effects of roX mutations on heterochromatic gene expression and PEV are limited to males. A sex-limited role for the roX RNAs in autosomal gene expression was unexpected. We propose that this reflects a difference in the heterochromatin of males and females, which serves to accommodate the heterochromatic Y chromosome present in the male nucleus. roX transcripts may thus participate in two distinct regulatory systems that have evolved in response to highly differentiated sex chromosomes: compensation of X-linked gene dosage and modulation of heterochromatin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleolar dominance of the Y chromosome in Drosophila melanogaster.

The rDNA genes are transcribed by RNA polymerase I to make structural RNAs for ribosomes. Hundreds of rDNA genes are typically arranged in an array that spans megabase pairs of DNA. These arrays are the major sites of transcription in growing cells, accounting for as much as 50% of RNA synthesis. The repetitive rDNA arrays are thought to use heterochromatic gene silencing as a mechanism for met...

متن کامل

Modulation of Heterochromatin by Male Specific Lethal Proteins and roX RNA in Drosophila melanogaster Males

The ribonucleoprotein Male Specific Lethal (MSL) complex is required for X chromosome dosage compensation in Drosophila melanogaster males. Beginning at 3 h of development the MSL complex binds transcribed X-linked genes and modifies chromatin. A subset of MSL complex proteins, including MSL1 and MSL3, is also necessary for full expression of autosomal heterochromatic genes in males, but not fe...

متن کامل

Cytogenetic and molecular characterization of heterochromatin gene models in Drosophila melanogaster.

In the past decade, genome-sequencing projects have yielded a great amount of information on DNA sequences in several organisms. The release of the Drosophila melanogaster heterochromatin sequence by the Drosophila Heterochromatin Genome Project (DHGP) has greatly facilitated studies of mapping, molecular organization, and function of genes located in pericentromeric heterochromatin. Surprising...

متن کامل

Two Dobzhansky-Muller genes interact to cause hybrid lethality in Drosophila.

The Dobzhansky-Muller model proposes that hybrid incompatibilities are caused by the interaction between genes that have functionally diverged in the respective hybridizing species. Here, we show that Lethal hybrid rescue (Lhr) has functionally diverged in Drosophila simulans and interacts with Hybrid male rescue (Hmr), which has functionally diverged in D. melanogaster, to cause lethality in F...

متن کامل

Aconitase and Developmental EndPointsasEarly IndicatorsofCellularToxicity Induced by Xenobiotics in Drosophila Melanogaster

Background: In this study, the toxicity of the different xenobiotics was tested on the fruit fly Drosophila melanogaster model system.  Methods: Fly larvae were raised on food supplemented with xenobioticsat different concentrations (sodium nitroprusside (0.1-1.5 mM), S-nitrosoglutathione (0.5-4 mM), and potassium ferrocyanide (1 mM)). Emergence of flies, food intake by larvae, and pupation h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 182 2  شماره 

صفحات  -

تاریخ انتشار 2009